How We Built an AI Social Post Generator That Converts Webpages into Viral Content
In the crowded landscape of digital marketing tools, we noticed a gap: while there were plenty of scheduling tools and analytics platforms, nothing elegantly solved the problem of transforming existing content into engaging social media posts. This is the story of how we built an AI-powered solution that not only fills this gap but does so with production-grade reliability, security, and performance.
Try the AI Social Post Generator
Experience the power of AI-driven content transformation. Turn any webpage into engaging social media posts optimized for LinkedIn, Twitter, Facebook, and Instagram.
Launch AI Social Post GeneratorWhat We'll Cover
The Business Case: Why Build This?
Our research revealed a common pain point among content creators and marketers: they produce excellent long-form content but struggle to repurpose it effectively for social media. The manual process of extracting key points, adapting tone for different platforms, and creating engaging hooks is time-consuming and often gets deprioritized.
Market Opportunity
- • 73% of marketers struggle with content repurposing
- • Average time to create social posts: 45 minutes
- • Growing demand for AI-powered marketing tools
- • Lead generation opportunity through value-first approach
Our Solution
- • One-click transformation of any webpage
- • Platform-specific optimization
- • Visual mockups for better preview
- • Smart email gate for lead capture
Architecture Overview
We designed the system with scalability, security, and maintainability in mind. Here's the high-level flow:
┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐ │ User Input │────▶│ URL Validation │────▶│ Rate Limit │ │ │ │ & Safety │ │ Check │ └──────────────────┘ └──────────────────┘ └──────────────────┘ │ ▼ ┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐ │ Cache Check │◀────│ Firecrawl │◀────│ Safe? Yes │ │ │ │ Scraping │ │ │ └──────────────────┘ └──────────────────┘ └──────────────────┘ │ │ ▼ ▼ ┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐ │ Return Cached │ │ Pre-Moderation │────▶│ Blocked? No │ │ │ │ Content Check │ │ │ └──────────────────┘ └──────────────────┘ └──────────────────┘ │ │ ▼ ▼ ┌──────────────────┐ ┌──────────────────┐ │ OpenAI │────▶│ Post-Moderation │ │ Generation │ │ Output Check │ └──────────────────┘ └──────────────────┘ │ │ ▼ ▼ ┌──────────────────┐ ┌──────────────────┐ │ Email Gate │────▶│ Store & Return │ │ Lead Capture │ │ │ └──────────────────┘ └──────────────────┘
Technology Stack
Backend Technologies
- Next.js 15.3 - App Router for SSR
- TypeScript - Type safety throughout
- Prisma + PostgreSQL - Data persistence
- Upstash Redis - Rate limiting
External Services
- OpenAI API - GPT-4.1-mini for generation
- Firecrawl - Intelligent web scraping
- Google Safe Browsing - URL safety
- Resend - Email delivery
Database Architecture with Supabase
For our production database, we paired Supabase with Prisma ORM - creating a powerful combination of managed PostgreSQL infrastructure and type-safe database access.
Why Supabase?
The all-in-one backend platform for modern apps
Built on PostgreSQL
- Full PostgreSQL power with JSON fields and complex queries
- Perfect compatibility with Prisma ORM
- Row Level Security for data protection
Developer Experience
- Real-time subscriptions out of the box
- Auto-generated APIs and TypeScript types
- Generous free tier: 500MB database storage
Database Schema
-- Core tables for AI Social Post Generator
model GeneratedPost {
id String @id @default(cuid())
url String
urlHash String @index
email String?
-- Scraped content storage
scrapedTitle String?
scrapedText String @db.Text
scrapedMeta Json?
-- Generated posts for each platform
linkedinPost String @db.Text
twitterPost String @db.Text
facebookPost String @db.Text
instagramPost String @db.Text
-- Performance & caching
aiModel String
processingMs Int
cached Boolean @default(false)
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
}
Setting Up Supabase
Quick Setup Guide
1. Create a Supabase Project
Visit supabase.com → Create new project → Choose Frankfurt region (eu-central-1)
2. Get Connection String
# Add to .env.local
DATABASE_URL=postgresql://postgres.[PROJECT-REF]:[PASSWORD]@aws-0-eu-central-1.pooler.supabase.com:5432/postgres?pgbouncer=true
3. Run Migrations
pnpm prisma generate
pnpm prisma migrate dev --name init
Type-Safe Database Access with Prisma
While Supabase provides the infrastructure, Prisma serves as our ORM layer, offering type-safe database queries, automated migrations, and an intuitive data modeling experience that integrates seamlessly with TypeScript.
Prisma ORM
Next-generation Node.js and TypeScript ORM
Why Prisma?
- Auto-generated TypeScript types from schema
- Intuitive data modeling with Prisma Schema
- Built-in connection pooling for serverless
Developer Experience
- Autocomplete for all database queries
- Type-safe migrations and seeding
- Prisma Studio for visual data management
Prisma Client Usage
// Type-safe database queries
import { prisma } from '@/lib/prisma';
// Create a new post with full type safety
const newPost = await prisma.generatedPost.create({
data: {
url,
urlHash,
linkedinPost, // TypeScript knows the types!
twitterPost,
facebookPost,
instagramPost,
scrapedMeta: { // JSON field
author, imageUrl
}
}
});
// Query with relations and filtering
const recentPosts = await prisma.generatedPost.findMany({
where: { email: { not: null } },
orderBy: { createdAt: 'desc' },
take: 10
});
Prisma + Supabase Setup
Complete Setup Process
1. Install Prisma
pnpm add -D prisma
pnpm add @prisma/client
2. Initialize Prisma with PostgreSQL
pnpm prisma init --datasource-provider postgresql
3. Create Prisma Client Singleton
// lib/prisma.ts
import { PrismaClient } from '@prisma/client'
const globalForPrisma = global as unknown as {
prisma: PrismaClient
}
export const prisma = globalForPrisma.prisma || new PrismaClient()
if (process.env.NODE_ENV !== 'production') {
globalForPrisma.prisma = prisma
}
4. Run Migrations
pnpm prisma migrate dev --name init
pnpm prisma generate
pnpm prisma studio
to visually explore and edit your database during development.Rate Limiting with Upstash Redis
To protect our AI resources and ensure fair usage, we implemented a sophisticated rate limiting system using Upstash Redis - a serverless Redis service designed for modern edge applications.
Upstash Redis
Serverless Redis for modern applications
Why Upstash?
- Serverless - pay per request, not per server
- Global edge deployment with <10ms latency
- Built-in rate limiting primitives
Rate Limiting Strategy
- Sliding window algorithm for smooth limits
- Tiered limits: anonymous vs verified users
- Analytics for usage monitoring
Implementation Code
// Tiered rate limiting with Upstash
import { Ratelimit } from '@upstash/ratelimit';
import { Redis } from '@upstash/redis';
const redis = new Redis({
url: process.env.UPSTASH_REDIS_REST_URL,
token: process.env.UPSTASH_REDIS_REST_TOKEN
});
// Anonymous users: 5 req/hour, 10 req/day
const anonLimiter = new Ratelimit({
redis,
limiter: Ratelimit.slidingWindow(5, '1 h'),
analytics: true
});
// Verified users: 20 req/hour, 50 req/day
const verifiedLimiter = new Ratelimit({
redis,
limiter: Ratelimit.slidingWindow(20, '1 h'),
analytics: true
});
Rate Limiting Flow
Identify User
Extract IP address or email for tracking
Check Limits
Query Redis for remaining allowance
Return Headers
Include X-RateLimit-* headers in response
Email Delivery with Resend
For reliable email delivery, we integrated Resend - a modern email API built for developers. It powers our lead capture emails and result delivery with exceptional reliability.
Resend Integration
Developer-first email platform
Key Features
- React Email templates for beautiful designs
- Webhook support for delivery tracking
- Domain verification for better deliverability
Why Resend?
- Simple API with great DX
- Built-in email validation
- Generous free tier: 3,000 emails/month
Implementation Example
// Email delivery for generated posts
import {Resend} from 'resend';
import {SocialPostEmail} from '@/emails/templates';
const resend = new Resend(process.env.RESEND_API_KEY);
// Send beautifully formatted results
await resend.emails.send({
to: userEmail,
from: 'Digital Applied <noreply@updates.digitalapplied.com>',
subject: 'Your AI-Generated Social Posts 🚀',
react: <SocialPostEmail posts={generatedPosts} url={originalUrl} />
});
Email Templates
Lead Capture Email
- • Personalized greeting
- • Generated posts with platform icons
- • Visual mockup previews
- • One-click copy buttons
- • Call-to-action for our services
Setup Requirements
Environment Variable:
RESEND_API_KEY=re_xxxxxxxxxxxx
Domain verification ensures emails land in inbox, not spam.
Beautiful Email Templates with React Email
To create stunning, responsive email templates that match our brand, we used React Email - a collection of high-quality, unstyled components for creating beautiful emails using React and TypeScript.
React Email
Build emails with React components
Why React Email?
- Component-based email development
- TypeScript support out of the box
- Live preview during development
Key Features
- Automatic inline styles for compatibility
- Built-in responsive design
- Cross-client compatibility
Email Template Example
import {
Body, Container, Head, Html, Preview,
Section, Text, Button, Img
} from '@react-email/components';
export function SocialPostEmail({ posts }) {
return (
<Html>
<Head />
<Preview>Your AI-generated social posts are ready!</Preview>
<Body style={{ backgroundColor: '#f6f9fc' }}>
<Container>
<Section>
<Img src="logo.png" width="120" />
<Text>🎉 Your social posts are ready!</Text>
{/* Platform-specific posts */}
<Button href="https://digitalapplied.com">
View All Posts
</Button>
</Section>
</Container>
</Body>
</Html>
);
}
Email Development Workflow
Develop
Build emails with React components and hot reload
Preview
Test in multiple email clients with live preview
Deploy
Render to HTML and send via Resend API
pnpm email dev
to launch the React Email preview server and see your templates in real-time.Intelligent Web Scraping with Firecrawl
For reliable content extraction from modern JavaScript-heavy websites, we integrated Firecrawl - an AI-powered web scraping API that handles dynamic content, bypasses anti-scraping measures, and delivers clean, structured data.
Firecrawl Integration
AI-powered web scraping for modern apps
Why Firecrawl?
- Handles JavaScript-rendered content
- Bypasses Cloudflare and anti-bot measures
- Returns clean markdown or structured data
Key Features
- Smart content extraction with AI
- Automatic retry with different strategies
- Metadata extraction (title, author, date)
Scraping Implementation
// Intelligent content extraction
import FirecrawlApp from '@firecrawl/firecrawl-js';
const firecrawl = new FirecrawlApp({
apiKey: process.env.FIRECRAWL_API_KEY
});
// Scrape with smart options
const scraped = await firecrawl.scrapeUrl(url, {
formats: ['markdown', 'html'],
waitFor: 2000, // Wait for JS
includeTags: ['article', 'main', 'p'],
excludeTags: ['nav', 'footer']
});
// Process and clean content
const content = cleanContent(scraped.markdown);
const metadata = scraped.metadata;
Content Processing Pipeline
Extract
Firecrawl fetches the page, executes JavaScript, and extracts main content
Clean
Remove navigation, ads, and formatting to get pure content
Analyze
Detect content type and extract key information for AI processing
Starting Smart: The MVP Approach
Instead of diving straight into complex AI integrations, we built an MVP with simulated AI responses. This allowed us to:
- Validate the user experience and interface
- Test the email gate conversion rate
- Gather feedback without incurring API costs
- Perfect the visual mockup components
MVP Implementation Strategy
// Pre-defined templates based on URL patterns
const generatePosts = (url: string) => {
// Match URL patterns to content types
if (url.includes('/blog')) {
return thoughtLeadershipTemplates;
}
// Return contextually appropriate posts
};
This approach proved invaluable. We discovered that users cared more about the visual preview than we anticipated, leading us to invest heavily in platform-accurate mockup components.
Production Implementation: 10 Critical Phases
Transforming the MVP into a production-ready system required careful planning and execution across 10 phases:
Phase 1Infrastructure Setup
Setting up the foundation with proper environment variables, package installations, and database schema.
# Critical packages
pnpm add ai openai @firecrawl/firecrawl-js
pnpm add @upstash/ratelimit @upstash/redis
pnpm add @prisma/client prisma
Phase 2URL Validation & Safety
Multi-layer validation including blocked keywords, TLDs, database blocklists, and Google Safe Browsing API.
Phase 3Rate Limiting
Tiered rate limiting with different allowances for anonymous vs. email-verified users.
Anonymous Users
- • 5 requests per hour
- • 10 requests per day
- • IP-based tracking
Verified Users
- • 20 requests per hour
- • 50 requests per day
- • Email-based tracking
Phase 4Web Scraping with Firecrawl
Intelligent content extraction that handles modern JavaScript-heavy websites.
const scraped = await firecrawl.scrapeUrl(url, {
formats: ['markdown', 'html'],
waitFor: 2000,
excludeTags: ['nav', 'footer', 'aside']
});
- • Handles SPAs and dynamic content
- • Extracts clean markdown for AI processing
- • Smart content truncation at 3000 chars
Phase 5Dual-Layer Content Moderation & AI Integration
Two-stage content moderation ensures safety before and after AI processing.
// Pre-moderation: Check scraped content
const moderation = await moderateScrapedContent(content);
if (!moderation.safe) {
throw new Error(moderation.reason);
}
// Generate posts with clean content
const posts = await generateSocialPosts(cleanContent);
// Post-moderation: Verify AI output
const finalPosts = await moderateContent(posts);
- • Pre-moderation blocks harmful input before AI processing
- • Post-moderation ensures safe output generation
- • Cost savings by filtering inappropriate content early
- • Compliance with OpenAI usage policies
Phase 6API Route Implementation
Production-grade API with caching, error handling, and database persistence.
Success Path
- 1. Validate URL
- 2. Check rate limits
- 3. Check cache (24hr)
- 4. Scrape & generate
- 5. Save to database
Error Handling
- • Graceful fallbacks
- • User-friendly messages
- • Detailed logging
- • Rate limit headers
Phase 7Frontend Error Handling
Enhanced UX with clear feedback and graceful degradation.
if (response.status === 429) {
const minutes = Math.ceil((reset - Date.now()) / 60000);
throw new Error(`Rate limit. Try again in ${minutes} minutes`);
}
- • Specific error messages for each scenario
- • Loading states with progress indicators
- • Retry mechanisms for transient failures
Phase 8Monitoring & Analytics
Comprehensive tracking for performance optimization and insights.
const metrics = {
totalGenerations: count,
uniqueUrls: unique.length,
cacheHitRate: (cached / total) * 100,
avgProcessingTime: avgMs,
topDomains: domains
};
- • Real-time usage dashboards
- • Performance metrics tracking
- • Error rate monitoring
Phase 9Abuse Prevention
Advanced pattern detection to identify and block malicious usage.
Detection Patterns
- • Rapid-fire requests (>3 in 60s) → Auto-block
- • Suspicious URL patterns → Immediate rejection
- • Known bad actors → Permanent blocklist
- • Unusual usage spikes → Alert & investigate
Automated blocking with manual review process for false positives.
Phase 10Cost Management
Budget controls and usage optimization to ensure sustainability.
const COST_LIMITS = {
daily: { openai: 50, firecrawl: 20 },
monthly: { openai: 1000, firecrawl: 400 }
};
- • Real-time cost tracking
- • Automatic throttling at 80% budget
- • Daily cost reports and alerts
URL Validation with Google Safe Browsing
Security is paramount when accepting user-submitted URLs. We implemented multi-layer validation including Google Safe Browsing API to protect against malicious content, phishing sites, and other security threats.
Google Safe Browsing
Enterprise-grade URL threat detection
Protection Layers
- Malware and phishing detection
- Social engineering site blocking
- Unwanted software warnings
Validation Strategy
- Custom keyword blocking
- Suspicious TLD filtering
- Dynamic blocklist updates
Multi-Layer URL Validation
// Complete URL validation pipeline
export async function validateURL(url: string): Promise<ValidationResult> {
// 1. Basic format validation
if (!/^https?:\/\//.test(url)) {
return { isValid: false, reason: 'Invalid URL format' };
}
// 2. Blocked keywords check
const blockedKeywords = ['malware', 'phishing', 'virus'];
if (blockedKeywords.some(k => url.includes(k))) {
return { isValid: false, reason: 'Blocked content' };
}
// 3. Google Safe Browsing check
const threat = await checkGoogleSafeBrowsing(url);
if (threat) {
return { isValid: false, reason: `Threat detected: ${threat}` };
}
return { isValid: true, normalizedUrl: url };
}
Validation Flow Diagram
URL Format Check
Ensure proper HTTPS protocol and valid structure
Keyword & TLD Filtering
Block suspicious domains and content
Google Safe Browsing API
Real-time threat intelligence check
Security, Rate Limiting & Abuse Prevention
Building a public-facing AI tool requires robust security measures to prevent abuse and protect resources:
URL Security
- • Blocked keywords
- • Prohibited TLDs
- • Domain blocklist
- • Google Safe Browsing
Rate Limiting
- • Sliding window
- • Tiered limits
- • Redis-backed
- • Clear feedback
Abuse Detection
- • Pattern analysis
- • Rapid-fire detection
- • Auto-blocking
- • Usage analytics
Sample Rate Limit Response
{
"error": "Rate limit exceeded",
"remaining": 0,
"reset": "2025-06-08T15:30:00.000Z",
"upgrade": "Verify your email for higher limits"
}
Dual-Layer Content Moderation: A Production Necessity
When building AI-powered tools that process user-submitted content, implementing comprehensive content moderation is not optional—it's essential for security, compliance, and quality.
Pre-Processing Moderation
Checks scraped content before AI processing
- Prevents harmful content from reaching AI models
- Saves API costs by filtering early
- Protects against prompt injection attacks
- Ensures compliance with API terms
Post-Processing Moderation
Validates AI-generated output before delivery
- Catches unexpected harmful generations
- Ensures brand-safe content delivery
- Provides fallback for edge cases
- Maintains consistent quality standards
Implementation Example
// Pre-moderation implementation in web-scraper.ts
async function moderateScrapedContent(
content: ScrapedContent
): Promise<ModerationResult> {
// Combine text for efficient checking
const textToCheck = [
content.title,
content.description,
content.content.substring(0, 1000)
].filter(Boolean).join('\\n\\n');
const moderation = await openai.moderations.create({
model: 'omni-moderation-latest',
input: textToCheck
});
if (moderation.results[0].flagged) {
// Check severity and handle appropriately
return handleFlaggedContent(moderation);
}
return { safe: true };
}
Cost-Benefit Analysis
20-30% Cost Savings
By filtering inappropriate content before AI processing
Enhanced Security
Protection against malicious content and prompt injection
Better Quality
Clean input data leads to higher quality AI outputs
AI Integration & Cost Optimization
Choosing the right AI model and optimizing costs was crucial for sustainability:
OpenAI Integration & Model Selection
At the heart of our social post generation is OpenAI's GPT-4 - providing the intelligence to understand content context and create platform-optimized posts that resonate with different audiences.
OpenAI GPT-4 Models
Choosing the right model for your use case
GPT-4.1-mini
Our Default$0.40 / $1.60
per 1M tokens (input/output)
- 15-20ms response time
- Great balance of quality and cost
- Excellent for social content
GPT-4.1
Advanced$2.00 / $8.00
per 1M tokens (input/output)
- 30-40ms response time
- Superior quality
- 5x more expensive
GPT-4.1-nano
Budget$0.10 / $0.40
per 1M tokens (input/output)
- 10-15ms response time
- Most affordable option
- Basic quality output
Alternative Model Options
While we default to GPT-4.1-mini for optimal cost-efficiency, our architecture supports any OpenAI model. Consider these alternatives:
Latest Models (2025)
- GPT-4.5-preview - $75/$150 per 1M tokensCutting-edge capabilities for complex content
- GPT-4o - $2.50/$10 per 1M tokensMultimodal support for image analysis
Specialized Options
- o3-mini - $1.10/$4.40 per 1M tokensAdvanced reasoning for strategic content
- gpt-4o-mini - $0.15/$0.60 per 1M tokensLegacy option, still reliable
Intelligent Prompt Engineering
// Platform-optimized generation with OpenAI
const systemPrompt = `
You are an expert social media strategist. Generate posts that:
- Match each platform's unique style and audience
- Use appropriate length (Twitter: 280 chars, LinkedIn: 1300)
- Include relevant emojis and hashtags
- Create engaging hooks that drive interaction
`;
const response = await openai.chat.completions.create({
model: 'gpt-4.1-mini',
messages: [
{ role: 'system', content: systemPrompt },
{ role: 'user', content: `Content: ${scrapedContent}` }
],
temperature: 0.7, // Balanced creativity
response_format: { type: 'json_object' }
});
Cost Analysis
Performance Metrics
Prompt Engineering for Quality
Our system prompt ensures platform-specific optimization:
Platform Requirements:
- LinkedIn: Professional, 1200-1500 chars, bullet points
- Twitter/X: Concise, max 280 chars, thread-friendly
- Facebook: Conversational, question-driven
- Instagram: Visual language, emojis, hashtags
Lessons Learned & Future Enhancements
What Worked Well
- ✓MVP First Approach
Validated concept before investing in AI
- ✓Visual Mockups
Users loved seeing exact previews
- ✓Smart Email Gate
40% conversion by showing value first
- ✓Tiered Rate Limiting
Balanced access with cost control
Challenges & Solutions
- !Content Length Limits
Solved with smart truncation at sentence boundaries
- !Dynamic Content Scraping
Firecrawl's wait parameter handled SPAs
- !Cost Predictability
Daily budget limits prevent surprises
- !Abuse Prevention
Multi-layer validation stopped bad actors
Future Enhancements
Phase 2 (Months 2-3)
- 🎨 AI-generated images for posts
- 📦 Bulk URL processing
- 👥 Team collaboration features
- 🔌 Chrome extension
- 📊 A/B testing suggestions
Phase 3 (Months 4-6)
- 🎥 Video content generation
- 📱 Story format support
- ⏰ Direct scheduling integration
- 📈 Performance analytics
- 🔧 Developer API
Performance & Results
<15s
Average processing time
40%
Email conversion rate
30%
Cost savings from moderation
99%+
Uptime reliability
Real-World Impact
Since launching the AI Social Post Generator, we've seen remarkable results that validate our approach:
Business Metrics
- 40% email capture rate (20x industry average)
- 70% newsletter opt-in from captured emails
- 25% of users return to generate more posts
- 5% conversion to paid services
Technical Achievements
- 99.9% uptime with zero security incidents
- 30% API cost reduction through pre-moderation
- <15 second average processing time
- 0% harmful content processed (blocked by moderation)
Conclusion
Building the AI Social Post Generator taught us valuable lessons about balancing innovation with practicality. By starting with an MVP, focusing on security from day one, and optimizing for both user experience and cost efficiency, we created a tool that not only serves our users but also generates qualified leads for our agency.
Key Takeaways
- 1️⃣Start with an MVP - Validate your concept before investing in expensive integrations
- 2️⃣Security is non-negotiable - Dual-layer content moderation saves costs and ensures compliance
- 3️⃣User experience drives conversion - Visual previews increased engagement by 300%
- 4️⃣Cost optimization matters - Choose the right AI model for your use case
- 5️⃣Plan for scale - Architecture decisions early on pay dividends later
Ready to transform your content?
See how our AI Social Post Generator can revolutionize your social media strategy.
Try the Social Post Generator nowProduction Deployment with Vercel
Deploying our AI Social Post Generator to production requires careful configuration of environment variables and services. Here's how we set up our Vercel deployment for optimal performance and security.
Vercel Deployment
Edge-optimized hosting for Next.js
Why Vercel?
- Zero-config Next.js deployment
- Global edge network (300+ PoPs)
- Automatic HTTPS & DDoS protection
Key Features
- Serverless functions auto-scaling
- Environment variables encryption
- Preview deployments for PRs
Environment Variables Configuration
# Core Services
DATABASE_URL="postgresql://...supabase.com:5432/postgres"
DIRECT_URL="postgresql://...supabase.com:5432/postgres"
# AI & Web Scraping
OPENAI_API_KEY="sk-proj-..."
FIRECRAWL_API_KEY="fc-..."
# Rate Limiting
UPSTASH_REDIS_REST_URL="https://...upstash.io"
UPSTASH_REDIS_REST_TOKEN="AX..."
# Email Service
RESEND_API_KEY="re_..."
# Security
GOOGLE_SAFE_BROWSING_API_KEY="AIza..."
# Feature Flags
ENABLE_AI_GENERATION="true"
NODE_ENV="production"
Deployment Process
Connect Repository
Import your GitHub repository to Vercel and configure automatic deployments
vercel link
Configure Environment
Add all required environment variables in Vercel dashboard
vercel env pull .env.local
Build & Deploy
Push to main branch triggers automatic deployment with build optimization
git push origin main
Performance Optimizations
- • Edge functions in 15+ regions globally
- • Automatic image optimization
- • Built-in CDN with 99.99% uptime
- • Smart caching strategies
- • Incremental Static Regeneration
Security Features
- • Encrypted environment variables
- • DDoS protection included
- • Automatic HTTPS certificates
- • Web Application Firewall
- • Bot protection & rate limiting
Ready to Transform Your Content Strategy?
Whether you want to use our tool or build your own custom AI solution, we're here to help.
Join thousands of marketers who are already transforming their content workflow with AI