AI Development10 min read

GLM 4.6 API Deployment Guide: Local & Cloud Setup

Deploy Zhipu AI GLM 4.6 with Z.ai API, OpenRouter, or local vLLM. Complete setup guide with code examples, pricing & integration patterns.

Digital Applied Team
October 14, 2025
10 min read
90%

Cost Savings vs Claude

200K

Token Context Window

5-30min

Deployment Time

$3/mo

Starting Price

Key Takeaways

Three deployment options: Z.ai API for simplicity, OpenRouter for unified access, and vLLM for local control with 200K context window support
90% cost savings: Z.ai API pricing starts at $0.60/M input tokens vs Claude Sonnet 4.5, with BigModel (China) offering ~$0.11 input
OpenAI-compatible API: OpenRouter provides seamless migration for existing applications with similar pricing to Z.ai
Local deployment specs: 8 H100 or 4 H200 GPUs for standard inference, with FP8 quantization reducing memory requirements by 50%
Full feature support: All deployment methods support 200K context window, reasoning capabilities, and tool calling for agentic AI

GLM 4.6 Overview: Enterprise-Grade Open Source AI

Released by Zhipu AI in September 2025, GLM 4.6 represents a significant advancement in open-source AI models, combining frontier-level performance with practical affordability and flexible deployment options. For a detailed comparison of Chinese AI models including GLM 4.5, Kimi K2, and Qwen 3 Coder, see our comprehensive analysis.

Key Features & Capabilities
200K Context Window: Expanded from 128K, enabling comprehensive document analysis and complex agentic tasks
MIT License: Fully open-source with commercial use, modification, and redistribution rights
Advanced Coding: Native integration with Claude Code, Cline, Roo Code, and other popular coding agents
Competitive Performance: 48.6% win rate vs Claude Sonnet 4.5 at 1/10th the cost

GLM 4.6's architecture is optimized for real-world applications, with specific enhancements in coding, long-context processing, reasoning, searching, and agentic AI capabilities. The model supports FP8/Int4 quantization on specialized hardware including Cambricon chips and Moore Threads GPUs, making it accessible across diverse infrastructure setups.

Deployment Options Comparison

GLM 4.6 offers three primary deployment paths, each optimized for different use cases. Whether you need rapid prototyping with cloud APIs or full control with self-hosted infrastructure, there's a deployment option that fits your requirements.

Z.ai API

Best For:

  • • Quick prototyping
  • • Startups & SMBs
  • • Standard integrations

Advantages:

  • • Official provider
  • • Simple setup (5 min)
  • • No infrastructure
  • • Auto-scaling

Pricing:

$0.60/M tokens

Input tokens (90% savings vs Claude)

OpenRouter

Best For:

  • • Multi-model apps
  • • Model comparison
  • • Unified billing

Advantages:

  • • OpenAI-compatible
  • • 100+ models
  • • Fallback support
  • • Easy migration

Pricing:

$0.60/M tokens

Input (matches Z.ai, includes infrastructure)

Local vLLM

Best For:

  • • Data privacy needs
  • • High volume (1M+ req)
  • • Custom fine-tuning

Advantages:

  • • Full control
  • • No API limits
  • • Data sovereignty
  • • Customizable

Requirements:

8x H100 GPUs

Or 4x H200 for FP8 inference

Z.ai API Setup: Official Provider Integration

The Z.ai API (formerly BigModel by Zhipu AI) provides the official, managed endpoint for GLM 4.6. Setup takes approximately 5 minutes and requires minimal configuration. For teams needing assistance with API integration, our Web Development team can help streamline the process.

Step 1: Create API Key

  1. Visit z.ai and create an account
  2. Navigate to the API section and generate your API key
  3. Save the key securely (it's only shown once)

Step 2: Install Dependencies

# Python - Install OpenAI SDK
pip install openai  # Z.ai uses OpenAI-compatible endpoints

# Node.js/TypeScript - Install OpenAI SDK
npm install openai
# or use pnpm
pnpm add openai

Step 3: Basic Integration (Python)

from openai import OpenAI

# Initialize client with Z.ai endpoint
client = OpenAI(
    api_key="your-zai-api-key",
    base_url="https://api.z.ai/v1"
)

# Create a chat completion request
response = client.chat.completions.create(
    model="glm-4.6",
    messages=[
        {
            "role": "system",
            "content": "You are a helpful AI assistant."
        },
        {
            "role": "user",
            "content": "Explain quantum computing in simple terms."
        }
    ],
    max_tokens=1000,
    temperature=0.7
)

# Print the AI response
print(response.choices[0].message.content)

Step 4: TypeScript/Node.js Integration

import OpenAI from 'openai';

// Initialize the OpenAI client with Z.ai configuration
const client = new OpenAI({
  apiKey: process.env.ZAI_API_KEY,
  baseURL: 'https://api.z.ai/v1'
});

// Helper function to generate AI responses
async function generateResponse(prompt: string) {
  const response = await client.chat.completions.create({
    model: 'glm-4.6',
    messages: [
      {
        role: 'system',
        content: 'You are a helpful AI assistant.'
      },
      {
        role: 'user',
        content: prompt
      }
    ],
    max_tokens: 1000,
    temperature: 0.7
  });

  return response.choices[0].message.content;
}

// Example usage
const result = await generateResponse('What is machine learning?');
console.log(result);
Partner Offer

Save 55% on Z.ai GLM 4.6 Access

Stack an exclusive 10% discount on top of Z.ai's 50% promotion. Enterprise-grade API access starting at $3/month.

Get Started
Instant setup
Cancel anytime

Advanced Features: Tool Calling

# Tool calling example for agentic AI applications
# Define available tools/functions
tools = [
    {
        "type": "function",
        "function": {
            "name": "get_weather",
            "description": "Get current weather for a location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "City name, e.g., London"
                    }
                },
                "required": ["location"]
            }
        }
    }
]

# Make request with tools enabled
response = client.chat.completions.create(
    model="glm-4.6",
    messages=[{"role": "user", "content": "What's the weather in Tokyo?"}],
    tools=tools,
    tool_choice="auto"
)

# Handle tool calls if AI decides to use them
if response.choices[0].message.tool_calls:
    tool_call = response.choices[0].message.tool_calls[0]
    # Execute your function and return result
    # (implement your weather API call here)

OpenRouter Integration: Unified Multi-Model Access

OpenRouter provides access to 100+ AI models through a single API, making it ideal for applications that need model flexibility or fallback options. Our CRM & Automation services can help you integrate multi-model workflows into your business processes.

Why Choose OpenRouter?

  • OpenAI-Compatible API: Drop-in replacement for existing OpenAI integrations
  • Model Fallbacks: Automatically switch to backup models if primary is unavailable
  • Unified Billing: Single invoice for all models (GPT-4, Claude, GLM 4.6, etc.)
  • Model Comparison: Test multiple models with the same prompts

Setup Process

  1. Create an account at openrouter.ai
  2. Generate an API key from the Keys section
  3. Add credits to your account (pay-as-you-go or subscription)

Python Implementation

from openai import OpenAI

# Initialize OpenRouter client
client = OpenAI(
    api_key="your-openrouter-api-key",
    base_url="https://openrouter.ai/api/v1"
)

# Access GLM 4.6 via OpenRouter
response = client.chat.completions.create(
    model="z-ai/glm-4.6",  # Note: include provider prefix
    messages=[
        {"role": "user", "content": "Write a Python function for binary search"}
    ],
    extra_headers={
        "HTTP-Referer": "https://yourapp.com",  # Optional: helps with rankings
        "X-Title": "Your App Name"  # Optional: display name
    }
)

# Print the generated code
print(response.choices[0].message.content)

TypeScript with Model Fallbacks

import OpenAI from 'openai';

// Initialize OpenRouter client with default headers
const client = new OpenAI({
  apiKey: process.env.OPENROUTER_API_KEY,
  baseURL: 'https://openrouter.ai/api/v1',
  defaultHeaders: {
    'HTTP-Referer': 'https://yourapp.com',
    'X-Title': 'Your App Name'
  }
});

// Implement automatic fallback to ensure uptime
async function generateWithFallback(prompt: string) {
  // Define model priority (primary → fallbacks)
  const models = [
    'z-ai/glm-4.6',                    // Primary: GLM 4.6 (cheapest)
    'anthropic/claude-sonnet-4.5',     // Fallback 1: Claude
    'openai/gpt-4.1-turbo'             // Fallback 2: GPT-4
  ];

  // Try each model in sequence
  for (const model of models) {
    try {
      const response = await client.chat.completions.create({
        model: model,
        messages: [{ role: 'user', content: prompt }],
        max_tokens: 2000
      });

      return {
        content: response.choices[0].message.content,
        model: model
      };
    } catch (error) {
      console.error(`Model ${model} failed, trying next...`);
      continue;
    }
  }

  throw new Error('All models failed');
}

// Example usage
const result = await generateWithFallback('Explain async/await in JavaScript');
console.log(`Response from ${result.model}:`, result.content);

Cost Optimization with OpenRouter

// Intelligent routing to optimize costs
async function routeByComplexity(
  prompt: string,
  complexity: 'simple' | 'complex'
) {
  // Map complexity to appropriate model
  const modelMap = {
    simple: 'z-ai/glm-4.5-air',    // 66% cheaper for simple tasks
    complex: 'z-ai/glm-4.6'         // Full model for complex reasoning
  };

  const response = await client.chat.completions.create({
    model: modelMap[complexity],
    messages: [{ role: 'user', content: prompt }]
  });

  return response.choices[0].message.content;
}

// Example: Simple query uses cheaper model
await routeByComplexity('What is 2+2?', 'simple');

// Example: Complex query uses full model
await routeByComplexity('Analyze this codebase architecture...', 'complex');

Local vLLM Deployment: Self-Hosted Infrastructure

For organizations requiring complete control over their AI infrastructure, local vLLM deployment offers maximum flexibility and data privacy.

Hardware Requirements

GPU Configuration Options

Standard Inference (FP16)

  • • 8x NVIDIA H100 GPUs (80GB each)
  • • Or 16x A100 GPUs (40GB each)
  • • Supports full 128K context window
  • • Memory: ~640GB GPU RAM total

Optimized Inference (FP8)

  • • 4x NVIDIA H200 GPUs (141GB each)
  • • Or 8x H100 GPUs with FP8 quantization
  • • Supports full 200K context window
  • • Memory: ~564GB GPU RAM total
  • • 50% memory savings vs FP16

Extended Context (200K)

  • • 16x H100 GPUs (80GB each)
  • • Or 8x H200 GPUs (141GB each)
  • • Required for full 200K context capability
  • • CPU offloading option: --cpu-offload-gb 16

Installation Steps

1. Set Up Python Environment

# Option 1: Standard Python virtual environment
python3 -m venv vllm-env
source vllm-env/bin/activate

# Option 2: Use uv for faster installation (recommended)
uv venv
source .venv/bin/activate

2. Install vLLM

# Option 1: Install vLLM with CUDA support
pip install vllm

# Option 2: Faster installation with uv (recommended)
uv pip install -U vllm --torch-backend auto

3. Download Model Weights

# Option 1: Automatic download (recommended)
# vLLM will download automatically on first run

# Option 2: Manual download from Hugging Face
git lfs install
git clone https://huggingface.co/zai-org/GLM-4.6

# Option 3: Download quantized version for reduced memory usage
git clone https://huggingface.co/QuantTrio/GLM-4.6-AWQ

4. Launch vLLM Server

# Configuration 1: Basic deployment (8x H100 GPUs)
vllm serve zai-org/GLM-4.6 \
  --tensor-parallel-size 8 \
  --tool-call-parser glm45 \
  --reasoning-parser glm45 \
  --enable-auto-tool-choice \
  --served-model-name glm-4.6

# Configuration 2: Optimized with FP8 quantization (4x H200 GPUs)
VLLM_ATTENTION_BACKEND=XFORMERS vllm serve zai-org/GLM-4.6 \
  --tensor-parallel-size 4 \
  --tool-call-parser glm45 \
  --reasoning-parser glm45 \
  --enable-auto-tool-choice \
  --quantization fp8 \
  --kv-cache-dtype fp8 \
  --gpu-memory-utilization 0.95 \
  --max-model-len 65536

# Configuration 3: Maximum context length (200K tokens, 16x H100 GPUs)
vllm serve zai-org/GLM-4.6 \
  --tensor-parallel-size 16 \
  --tool-call-parser glm45 \
  --reasoning-parser glm45 \
  --max-model-len 200000 \
  --cpu-offload-gb 16 \
  --gpu-memory-utilization 0.95

Client Integration with Local vLLM

from openai import OpenAI

# Connect to your local vLLM server
client = OpenAI(
    api_key="not-needed-for-local",  # vLLM doesn't require auth by default
    base_url="http://localhost:8000/v1"  # Local vLLM endpoint
)

# Use exactly like any other OpenAI-compatible API
# No code changes needed from Z.ai or OpenRouter!
response = client.chat.completions.create(
    model="glm-4.6",
    messages=[
        {"role": "user", "content": "Analyze this 50-page document..."}
    ],
    max_tokens=4000
)

# Process the response
print(response.choices[0].message.content)

Production Deployment with Docker

# Dockerfile for production vLLM GLM-4.6 deployment
FROM nvidia/cuda:12.1.0-devel-ubuntu22.04

# Install system dependencies
RUN apt-get update && apt-get install -y \
    python3.11 python3-pip git

# Install vLLM with CUDA support
RUN pip install vllm

# Download model (alternatively, mount as volume for faster startup)
RUN pip install huggingface_hub[cli]
RUN huggingface-cli download zai-org/GLM-4.6

# Expose vLLM API port
EXPOSE 8000

# Start vLLM server with production configuration
CMD ["vllm", "serve", "zai-org/GLM-4.6", \
     "--tensor-parallel-size", "8", \
     "--tool-call-parser", "glm45", \
     "--reasoning-parser", "glm45", \
     "--host", "0.0.0.0", \
     "--port", "8000"]

Pricing Comparison: Cloud vs Local Deployment

Understanding the total cost of ownership for each deployment option is crucial for making informed decisions.

API Pricing (Per Million Tokens)
ProviderInputOutputNotes
Z.ai API$0.60$2.00Official provider
OpenRouter$0.60$2.00Same as Z.ai
BigModel (CN)$0.11$0.28China-based accounts
Claude Sonnet 4.5$3.00$15.00For comparison
Exclusive Offer

Deploy GLM 4.6 at Scale

Get 55% off Z.ai's enterprise API access. Starting at just $3/month with unlimited requests and 200K context windows.

200K token context window
Compatible with 10+ coding tools
90% cheaper than Claude Sonnet 4.5
Start Saving Now

Instant activation • No credit card for trial

Local Deployment Cost Analysis

Monthly Infrastructure Costs (Estimate)

Cloud GPU (AWS p5.48xlarge)

  • • 8x H100 GPUs
  • • $98.32/hour on-demand
  • $71,590/month (730 hours)
  • $35,795/month with 1-year reserved
  • Break-even: ~120M tokens/month vs API

On-Premise Hardware

  • • 8x H100 GPUs: ~$240,000 (one-time)
  • • Server + networking: ~$30,000
  • • Power (3-5 kW): ~$500/month
  • • Cooling + maintenance: ~$1,000/month
  • Total: $270K upfront + $1.5K/month
  • Break-even: ~12 months at high volume

Recommendation by Volume

  • <10M tokens/month: Use Z.ai API ($6-20/month)
  • 10-100M tokens/month: Use OpenRouter ($60-200/month)
  • >100M tokens/month: Consider local deployment
  • >1B tokens/month: Local deployment ROI-positive

Integration Patterns: Production-Ready Examples

Pattern 1: Next.js API Route with Streaming

// app/api/chat/route.ts
import OpenAI from 'openai';
import { OpenAIStream, StreamingTextResponse } from 'ai';

// Initialize GLM 4.6 client
const client = new OpenAI({
  apiKey: process.env.ZAI_API_KEY,
  baseURL: 'https://api.z.ai/v1'
});

// Use edge runtime for best performance
export const runtime = 'edge';

export async function POST(req: Request) {
  // Extract messages from request body
  const { messages } = await req.json();

  // Create streaming completion
  const response = await client.chat.completions.create({
    model: 'glm-4.6',
    messages: messages,
    stream: true,
    max_tokens: 2000
  });

  // Convert to Vercel AI SDK streaming response
  const stream = OpenAIStream(response);
  return new StreamingTextResponse(stream);
}

Pattern 2: Rate Limiting with Upstash Redis

import { Ratelimit } from '@upstash/ratelimit';
import { Redis } from '@upstash/redis';
import OpenAI from 'openai';

const redis = new Redis({
  url: process.env.UPSTASH_REDIS_REST_URL,
  token: process.env.UPSTASH_REDIS_REST_TOKEN
});

const ratelimit = new Ratelimit({
  redis: redis,
  limiter: Ratelimit.slidingWindow(10, '1 m'), // 10 requests per minute
  analytics: true
});

const client = new OpenAI({
  apiKey: process.env.ZAI_API_KEY,
  baseURL: 'https://api.z.ai/v1'
});

export async function POST(req: Request) {
  const ip = req.headers.get('x-forwarded-for') || 'anonymous';
  const { success, limit, remaining, reset } = await ratelimit.limit(ip);

  if (!success) {
    return new Response('Rate limit exceeded', {
      status: 429,
      headers: {
        'X-RateLimit-Limit': limit.toString(),
        'X-RateLimit-Remaining': remaining.toString(),
        'X-RateLimit-Reset': reset.toString()
      }
    });
  }

  const { messages } = await req.json();
  const response = await client.chat.completions.create({
    model: 'glm-4.6',
    messages: messages
  });

  return Response.json(response.choices[0].message);
}

Pattern 3: Error Handling & Retry Logic

import OpenAI from 'openai';

const client = new OpenAI({
  apiKey: process.env.ZAI_API_KEY,
  baseURL: 'https://api.z.ai/v1',
  maxRetries: 3,
  timeout: 60000 // 60 seconds
});

async function generateWithRetry(
  messages: any[],
  maxRetries = 3
): Promise<string> {
  let lastError: Error | null = null;

  for (let attempt = 0; attempt < maxRetries; attempt++) {
    try {
      const response = await client.chat.completions.create({
        model: 'glm-4.6',
        messages: messages,
        max_tokens: 2000
      });

      return response.choices[0].message.content || '';
    } catch (error) {
      lastError = error as Error;

      // Don't retry on client errors (400-499)
      if (error instanceof OpenAI.APIError && error.status) {
        if (error.status >= 400 && error.status < 500) {
          throw error;
        }
      }

      // Exponential backoff
      const delay = Math.min(1000 * Math.pow(2, attempt), 10000);
      await new Promise(resolve => setTimeout(resolve, delay));

      console.log(`Retry attempt ${attempt + 1} after ${delay}ms`);
    }
  }

  throw lastError || new Error('Max retries exceeded');
}

// Usage in API route
export async function POST(req: Request) {
  try {
    const { messages } = await req.json();
    const content = await generateWithRetry(messages);
    return Response.json({ content });
  } catch (error) {
    console.error('Generation failed:', error);
    return Response.json(
      { error: 'Failed to generate response' },
      { status: 500 }
    );
  }
}

Pattern 4: Context Management for Long Documents

import OpenAI from 'openai';

interface Message {
  role: 'system' | 'user' | 'assistant';
  content: string;
}

class GLMContextManager {
  private client: OpenAI;
  private maxTokens = 200000; // GLM 4.6 context limit
  private messages: Message[] = [];

  constructor(apiKey: string, baseURL: string) {
    this.client = new OpenAI({ apiKey, baseURL });
  }

  // Estimate tokens (rough approximation: 1 token ≈ 4 characters)
  private estimateTokens(text: string): number {
    return Math.ceil(text.length / 4);
  }

  private getTotalTokens(): number {
    return this.messages.reduce(
      (total, msg) => total + this.estimateTokens(msg.content),
      0
    );
  }

  // Add message with automatic context management
  addMessage(role: Message['role'], content: string) {
    this.messages.push({ role, content });

    // If exceeding context, remove oldest user/assistant messages
    // Keep system message
    while (this.getTotalTokens() > this.maxTokens * 0.9) {
      const indexToRemove = this.messages.findIndex(
        m => m.role !== 'system'
      );
      if (indexToRemove === -1) break;
      this.messages.splice(indexToRemove, 1);
    }
  }

  async generate(userMessage: string): Promise<string> {
    this.addMessage('user', userMessage);

    const response = await this.client.chat.completions.create({
      model: 'glm-4.6',
      messages: this.messages,
      max_tokens: 4000
    });

    const assistantMessage = response.choices[0].message.content || '';
    this.addMessage('assistant', assistantMessage);

    return assistantMessage;
  }

  reset() {
    this.messages = [];
  }
}

// Usage
const manager = new GLMContextManager(
  process.env.ZAI_API_KEY!,
  'https://api.z.ai/v1'
);

manager.addMessage('system', 'You are a helpful assistant.');
const response1 = await manager.generate('Analyze this 100-page document...');
const response2 = await manager.generate('What were the key findings?');

Production Best Practices

Follow these best practices to ensure secure, reliable, and cost-effective GLM 4.6 deployments in production environments.

1. Security & API Key Management

Environment Variables: Never hardcode API keys. Use .env files (local) or secret managers like AWS Secrets Manager, Vercel Environment Variables, or HashiCorp Vault (production)
Key Rotation: Rotate API keys every 90 days or immediately if compromised. Set calendar reminders for regular rotation
Least Privilege: Create separate API keys for dev, staging, and production environments. Use different rate limits for each tier
IP Whitelisting: Restrict API access to known IP ranges when possible. Configure firewall rules for local vLLM deployments

2. Monitoring & Logging

Implement comprehensive monitoring to track performance, costs, and errors in real-time.

import { analytics } from '@vercel/analytics';

async function generateWithAnalytics(messages: any[]) {
  const startTime = Date.now();

  try {
    const response = await client.chat.completions.create({
      model: 'glm-4.6',
      messages: messages
    });

    // Log success metrics
    analytics.track('llm_request_success', {
      model: 'glm-4.6',
      duration: Date.now() - startTime,
      tokens: response.usage?.total_tokens || 0,
      cost: calculateCost(response.usage)
    });

    return response.choices[0].message.content;
  } catch (error) {
    // Log errors for monitoring
    analytics.track('llm_request_error', {
      model: 'glm-4.6',
      error: error.message,
      duration: Date.now() - startTime
    });

    throw error;
  }
}

function calculateCost(usage: any) {
  const inputCost = (usage?.prompt_tokens || 0) * 0.60 / 1_000_000;
  const outputCost = (usage?.completion_tokens || 0) * 2.00 / 1_000_000;
  return inputCost + outputCost;
}

3. Caching Strategies

Reduce costs and improve response times by caching frequently requested completions.

import { Redis } from '@upstash/redis';
import crypto from 'crypto';

const redis = new Redis({
  url: process.env.UPSTASH_REDIS_REST_URL,
  token: process.env.UPSTASH_REDIS_REST_TOKEN
});

async function generateWithCache(messages: any[]) {
  // Create cache key from messages
  const cacheKey = crypto
    .createHash('sha256')
    .update(JSON.stringify(messages))
    .digest('hex');

  // Check cache first
  const cached = await redis.get(`glm:${cacheKey}`);
  if (cached) {
    console.log('Cache hit');
    return cached as string;
  }

  // Generate new response
  const response = await client.chat.completions.create({
    model: 'glm-4.6',
    messages: messages
  });

  const content = response.choices[0].message.content || '';

  // Cache for 1 hour
  await redis.setex(`glm:${cacheKey}`, 3600, content);

  return content;
}

4. Cost Optimization Tips

Prompt Engineering: Shorter, clearer prompts reduce token usage by 30-50%. Remove unnecessary context and use concise instructions
Response Limits: Set max_tokens to prevent unnecessarily long responses. Use 500-1000 for summaries, 2000-4000 for detailed content
Model Selection: Use GLM-4.5-Air for simple tasks like classification or short responses (66% cheaper than GLM 4.6)
Batch Processing: Combine multiple requests into a single API call when possible. Process documents in chunks
Cache Aggressively: Cache common queries, FAQ responses, and static content to avoid redundant API calls (30-70% cost reduction)

5. Error Handling Checklist

Implement exponential backoff for rate limits (start with 1s, double on each retry, max 10s)
Set reasonable timeouts (30-60 seconds for complex queries, 10-20s for simple requests)
Handle specific error codes: 401 (auth), 429 (rate limit), 500 (server error), 503 (unavailable)
Provide fallback responses for critical user-facing paths (cached responses, simplified outputs)
Log errors with sufficient context: request ID, timestamp, user ID, model, prompt length
Monitor error rates and set up alerts (> 5% error rate,> 10 errors/minute, etc.)

6. Local vLLM Production Deployment

Deploy vLLM with Docker Compose for production-grade reliability and scalability.

# docker-compose.yml for production vLLM
version: '3.8'

services:
  vllm-glm46:
    image: vllm/vllm-openai:latest
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              count: 8
              capabilities: [gpu]
    environment:
      - VLLM_ATTENTION_BACKEND=XFORMERS
      - HF_HOME=/models
    volumes:
      - ./models:/models
    ports:
      - "8000:8000"
    command:
      - --model=zai-org/GLM-4.6
      - --tensor-parallel-size=8
      - --tool-call-parser=glm45
      - --reasoning-parser=glm45
      - --quantization=fp8
      - --kv-cache-dtype=fp8
      - --gpu-memory-utilization=0.95
      - --max-model-len=65536
      - --host=0.0.0.0
      - --port=8000
    restart: unless-stopped
    healthcheck:
      test: ["CMD", "curl", "-f", "http://localhost:8000/health"]
      interval: 30s
      timeout: 10s
      retries: 3

  nginx:
    image: nginx:alpine
    ports:
      - "80:80"
      - "443:443"
    volumes:
      - ./nginx.conf:/etc/nginx/nginx.conf
      - ./ssl:/etc/nginx/ssl
    depends_on:
      - vllm-glm46
    restart: unless-stopped

Conclusion

GLM 4.6 offers exceptional flexibility in deployment, from zero-configuration cloud APIs to full control with local vLLM installations. Your choice depends on three key factors:

Volume

Use API for <100M tokens/month, local for >1B tokens/month

Control

API for convenience, local for data sovereignty and customization

Budget

Z.ai API at $0.60/M input tokens is 90% cheaper than Claude Sonnet 4.5

For most developers and businesses, starting with Z.ai API or OpenRouter provides the best balance of cost, performance, and ease of use. As your usage scales beyond 100M tokens per month or if you require strict data privacy controls, local vLLM deployment becomes increasingly attractive with its one-time infrastructure investment.

Ready to deploy?

Start Building with GLM 4.6

Join developers saving 55% on enterprise AI infrastructure. Deploy in minutes with Z.ai's production-ready platform.

Instant setup
Enterprise SLA
Cancel anytime
Frequently Asked Questions

Related Articles